Representations of Residually Finite Groups by Isometries of the Urysohn Space
نویسنده
چکیده
As a consequence of Kirchberg’s work, Connes Embedding Conjecture is equivalent to the property that every homomorphism of the group F∞ ×F∞ into the unitary group U(l) with the strong topology is pointwise approximated by homomorphisms with a precompact range. In this form, the property (which we call Kirchberg’s property) makes sense for an arbitrary topological group. We establish the validity of the Kirchberg property for the isometry group Iso (U) of the universal Urysohn metric space U as a consequence of a stronger result: every representation of a residually finite group by isometries of U can be pointwise approximated by representations with a finite range. This brings up the natural question of which other concrete infinite-dimensional groups satisfy the Kirchberg property.
منابع مشابه
Extending Partial Isometries
We show that a finite metric space A admits an extension to a finite metric space B so that each partial isometry of A extends to an isometry of B. We also prove a more precise result on extending a single partial isometry of a finite metric space. Both these results have consequences for the structure of the isometry groups of the rational Urysohn metric space and the Urysohn metric space.
متن کاملGlobalization of the partial isometries of metric spaces and local approximation of the group of isometries of Urysohn space
We prove the equivalence of the two important facts about finite metric spaces and universal Urysohn metric spaces U, namely theorem A and theorem B below: Theorem A (Approximation): The group of isometry ISO(U) contains everywhere dense locally finite subgroup; Theorem G(Globalization): For each finite metric space F there exists another finite metric space F̄ and isometric imbedding j of F to ...
متن کاملRamsey–milman Phenomenon, Urysohn Metric Spaces, and Extremely Amenable Groups
In this paper we further study links between concentration of measure in topological transformation groups, existence of fixed points, and Ramsey-type theorems for metric spaces. We prove that whenever the group Iso (U) of isometries of Urysohn’s universal complete separable metric space U, equipped with the compact-open topology, acts upon an arbitrary compact space, it has a fixed point. The ...
متن کاملOn the isometry group of the Urysohn space
We give a general criterion for the (bounded) simplicity of the automorphism groups of certain countable structures and apply it to show that the isometry group of the Urysohn space modulo the normal subgroup of bounded isometries is a simple group.
متن کاملRESIDUAL SOLUBILITY OF SF-GROUPS
Seifert Fibre Groups (SF-Gps) have been introduced and their first derived groups have been worked out in an earlier paper by the author [2,3]. Now we aim to prove that they are residually soluble and residually finite.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006